Experimental and model-based evaluation of the role of denitrifying polyphosphate accumulating organisms at two large scale WWTPs in northern Poland

The capabilities of denitrifying Polyphosphate Accumulating Organisms (DPAOs) in two large-scale plants in northern Poland performing enhanced biological phosphorus removal (EBPR) were evaluated in this study. A series of batch tests with the process biomass aimed at the measurements of phosphate re...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 54(2006), 8 vom: 01., Seite 73-81
1. Verfasser: Makinia, J (VerfasserIn)
Weitere Verfasser: Rosenwinkel, K H, Swinarski, M, Dobiegala, E
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Water science and technology : a journal of the International Association on Water Pollution Research
Schlagworte:Evaluation Study Journal Article Research Support, Non-U.S. Gov't Nitrites Polyphosphates
Beschreibung
Zusammenfassung:The capabilities of denitrifying Polyphosphate Accumulating Organisms (DPAOs) in two large-scale plants in northern Poland performing enhanced biological phosphorus removal (EBPR) were evaluated in this study. A series of batch tests with the process biomass aimed at the measurements of phosphate release (with artificial substrate and real wastewater) and subsequent phosphate uptake under anoxic/aerobic conditions. The process kinetics were predicted using ASM2d implemented in the GPS-X ver. 4.0.2 simulation package. The results from one experimental series (summer) were used for the model calibration, whereas the results from another series (spring) were used for the model validation. The model parameters were also accurately confirmed by predictions of the accompanying field measurements in the full-scale bioreactors. The experimental and simulation results revealed that a relatively small fraction of PAO could denitrify (eta(NO3,PAO) = 0.32). The denitrification rates associated with the anoxic storage of PP and the anoxic growth of PAO only constituted 16.0-21.0% of the denitrification rates associated with the anoxic activity of "ordinary" heterotrophs
Beschreibung:Date Completed 24.04.2007
Date Revised 10.12.2019
published: Print
Citation Status MEDLINE
ISSN:0273-1223