Real-time investigation of lung surfactant respreading with surface vibrational spectroscopy

The respreading of a lung surfactant monolayer at the air-water interface is investigated with broad bandwidth sum frequency generation (BBSFG) spectroscopy. The lung surfactant mixture contains chain perdeuterated dipalmitoylphosphatidylcholine (DPPC-d62), palmitoyloleoylphosphatidylglycerol (POPG)...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 22(2006), 26 vom: 19. Dez., Seite 11267-74
1. Verfasser: Ma, Gang (VerfasserIn)
Weitere Verfasser: Allen, Heather C
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Lipid Bilayers Phosphatidylglycerols Pulmonary Surfactants 1,2-Dipalmitoylphosphatidylcholine 2644-64-6 Palmitic Acid 2V16EO95H1
Beschreibung
Zusammenfassung:The respreading of a lung surfactant monolayer at the air-water interface is investigated with broad bandwidth sum frequency generation (BBSFG) spectroscopy. The lung surfactant mixture contains chain perdeuterated dipalmitoylphosphatidylcholine (DPPC-d62), palmitoyloleoylphosphatidylglycerol (POPG), palmitic acid (PA), and KL4 (a 21-residue polypeptide analogue to the surfactant protein SP-B). DPPC-d62 serves as a probe molecule for the spectroscopic investigation. The BBSFG spectra of DPPC-d62 in the lung surfactant mixture are obtained in the C-D stretching region in real-time during film compression and expansion in a Langmuir trough. The BBSFG intensity of the CD3 stretch peak from DPPC-d62 terminal methyl groups is used as a measure of the interfacial density of DPPC-d62 after careful consideration of orientation effects. For the first time, the interfacial loss of DPPC in a complex lung surfactant mixture is quantified. Spectroscopic results reveal that there is an 18% DPPC-d62 interfacial loss during film respreading. However, the surface pressure-area isotherm measurements demonstrate that there is a rather large trough area reduction (37%) during film expansion. The relatively small interfacial loss of DPPC-d62 and the rather large trough area reduction indicate that the respreading of DPPC and non-DPPC components in the lung surfactant is not uniform and a surface refinement process exists during film compression and expansion. This refinement process results in a DPPC-enriched monolayer with a significant depletion of non-DPPC components after film respreading. Implication for replacement surfactant design from this work is discussed
Beschreibung:Date Completed 26.01.2007
Date Revised 21.11.2013
published: Print
Citation Status MEDLINE
ISSN:1520-5827