Multiscale hybrid linear models for lossy image representation

In this paper, we introduce a simple and efficient representation for natural images. We view an image (in either the spatial domain or the wavelet domain) as a collection of vectors in a high-dimensional space. We then fit a piece-wise linear model (i.e., a union of affine subspaces) to the vectors...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 15(2006), 12 vom: 20. Dez., Seite 3655-71
1. Verfasser: Hong, Wei (VerfasserIn)
Weitere Verfasser: Wright, John, Huang, Kun, Ma, Yi
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM167048422
003 DE-627
005 20231223112104.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0557.xml 
035 |a (DE-627)NLM167048422 
035 |a (NLM)17153941 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hong, Wei  |e verfasserin  |4 aut 
245 1 0 |a Multiscale hybrid linear models for lossy image representation 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 04.01.2007 
500 |a Date Revised 26.10.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, we introduce a simple and efficient representation for natural images. We view an image (in either the spatial domain or the wavelet domain) as a collection of vectors in a high-dimensional space. We then fit a piece-wise linear model (i.e., a union of affine subspaces) to the vectors at each downsampling scale. We call this a multiscale hybrid linear model for the image. The model can be effectively estimated via a new algebraic method known as generalized principal component analysis (GPCA). The hybrid and hierarchical structure of this model allows us to effectively extract and exploit multimodal correlations among the imagery data at different scales. It conceptually and computationally remedies limitations of many existing image representation methods that are based on either a fixed linear transformation (e.g., DCT, wavelets), or an adaptive uni-modal linear transformation (e.g., PCA), or a multimodal model that uses only cluster means (e.g., VQ). We will justify both quantitatively and experimentally why and how such a simple multiscale hybrid model is able to reduce simultaneously the model complexity and computational cost. Despite a small overhead of the model, our careful and extensive experimental results show that this new model gives more compact representations for a wide variety of natural images under a wide range of signal-to-noise ratios than many existing methods, including wavelets. We also briefly address how the same (hybrid linear) modeling paradigm can be extended to be potentially useful for other applications, such as image segmentation 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Wright, John  |e verfasserin  |4 aut 
700 1 |a Huang, Kun  |e verfasserin  |4 aut 
700 1 |a Ma, Yi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 15(2006), 12 vom: 20. Dez., Seite 3655-71  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:15  |g year:2006  |g number:12  |g day:20  |g month:12  |g pages:3655-71 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2006  |e 12  |b 20  |c 12  |h 3655-71