S-nitrosothiol detection via amperometric nitric oxide sensor with surface modified hydrogel layer containing immobilized organoselenium catalyst
A novel electrochemical device for the direct detection of S-nitrosothiol species (RSNO) is proposed by modifying an amperometric nitric oxide (NO) gas sensor with thin hydrogel layer containing an immobilized organoselenium catalyst. The diselenide, 3,3'-dipropionicdiselenide, is covalently co...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1991. - 22(2006), 25 vom: 05. Dez., Seite 10830-6 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2006
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, N.I.H., Extramural Organoselenium Compounds S-Nitrosothiols Hydrogel, Polyethylene Glycol Dimethacrylate 25852-47-5 Nitric Oxide 31C4KY9ESH |
Zusammenfassung: | A novel electrochemical device for the direct detection of S-nitrosothiol species (RSNO) is proposed by modifying an amperometric nitric oxide (NO) gas sensor with thin hydrogel layer containing an immobilized organoselenium catalyst. The diselenide, 3,3'-dipropionicdiselenide, is covalently coupled to primary amine groups in polyethylenimine (PEI), which is further cross-linked to form a hydrogel layer on a dialysis membrane support. Such a polymer film containing the organoselenium moiety is capable of decomposing S-nitrosothiols to generate NO(g) at the distal tip of the NO sensor. Under optimized conditions, various RSNOs (e.g., nitrosocysteine (CysNO), nitrosoglutathione (GSNO), etc.) are reversibly detected at </=0.1 microM levels, with sensor lifetimes of at least 10 days. The presence of reducing agents (e.g., glutathione) added to the test solution enhances the amperometric dynamic range output to approximately 25 microM levels of RSNO species. Sensitivities observed for different small molecule RSNO species are nearly equivalent, in sharp contrast to the behavior observed previously for a similar RSNO sensing configuration based on an immobilized Cu(I/II) catalytic layer. It is further shown that the new RSNO sensors can be used to assess the "NO-generating" ability of fresh blood samples by effectively detecting the total level of reactive low molecular-weight RSNO species present in such samples |
---|---|
Beschreibung: | Date Completed 19.01.2007 Date Revised 16.11.2017 published: Print Citation Status MEDLINE |
ISSN: | 0743-7463 |