SECM study of solute partitioning and electron transfer at the ionic liquid/water interface
Molecular partitioning and electron-transfer kinetics have been studied at the ionic liquid/water (IL/water) interface by scanning electrochemical microscopy (SECM). The ionic liquid C8mimC1C1N is immiscible with water and forms a nonpolarizable interface when in contact with it. Partitioning of fer...
Publié dans: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 22(2006), 25 vom: 05. Dez., Seite 10705-10 |
---|---|
Auteur principal: | |
Autres auteurs: | , , |
Format: | Article |
Langue: | English |
Publié: |
2006
|
Accès à la collection: | Langmuir : the ACS journal of surfaces and colloids |
Sujets: | Journal Article |
Résumé: | Molecular partitioning and electron-transfer kinetics have been studied at the ionic liquid/water (IL/water) interface by scanning electrochemical microscopy (SECM). The ionic liquid C8mimC1C1N is immiscible with water and forms a nonpolarizable interface when in contact with it. Partitioning of ferrocene (Fc) across the IL/water interface was studied by SECM and found to be kinetically fast with a partition coefficient CIL/CW of 2400:1. The partition coefficient value was measured by SECM under quasi-steady-state conditions without waiting for complete solute equilibration. To investigate the kinetics of the electron transfer (ET) between aqueous ferricyanide and Fc dissolved in IL, a new approach to the analysis of the SECM current-distance curves was developed to separate the contributions of Fc partitioning and the ET reaction to the tip current. Several combinations of different aqueous and nonaqueous redox species were investigated; however, only the Fc/Fe(CN)63- system behaved according to the Butler-Volmer formalism over the entire accessible potential range |
---|---|
Description: | Date Completed 19.01.2007 Date Revised 28.11.2006 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |