A perturbation method for predicting the temperature and stress sensitivities of quartz vibrating structures simulated by finite-element analysis

Thermal and mechanical sensitivities of vibrating structures and wave guides are key parameters for the optimization of high stability resonant devices operating in the ultrasonic frequency range (from a few tenth of kilohertz to a few gigahertz). In this paper, the possibility to simulate and predi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1999. - 53(2006), 11 vom: 11. Nov., Seite 2086-94
1. Verfasser: Ballandras, Sylvain (VerfasserIn)
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM166649236
003 DE-627
005 20250207191311.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0556.xml 
035 |a (DE-627)NLM166649236 
035 |a (NLM)17111494 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ballandras, Sylvain  |e verfasserin  |4 aut 
245 1 2 |a A perturbation method for predicting the temperature and stress sensitivities of quartz vibrating structures simulated by finite-element analysis 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 13.12.2006 
500 |a Date Revised 17.09.2019 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Thermal and mechanical sensitivities of vibrating structures and wave guides are key parameters for the optimization of high stability resonant devices operating in the ultrasonic frequency range (from a few tenth of kilohertz to a few gigahertz). In this paper, the possibility to simulate and predict temperature coefficients of frequency (TCF) of quartz transducers of any shape as well as their stress sensitivity coefficients is addressed. The theoretical developments based on harmonic finite-element analysis coupled with a variational perturbation method are detailed, showing how to derive the regarded parameters. The proposed approach is validated using a two-dimensional (2-D) model of a plane face-bulk acoustic resonator for which an analytical model can give access to both TCF and stress sensitivity coefficients. It is then applied to a 2-D model of convex plane bulk acoustic resonator of singly rotated quartz and used to compute the first order TCF of a 3-D model of a tuning fork structure. In the latter case, the importance of considering the actual excitation of the device is demonstrated, allowing for the accurate definition of angular loci for which thermal compensation can be expected, in agreement with literature. Possible extensions and improvements of the proposed method is discussed in conclusion 
650 4 |a Journal Article 
773 0 8 |i Enthalten in  |t IEEE transactions on ultrasonics, ferroelectrics, and frequency control  |d 1999  |g 53(2006), 11 vom: 11. Nov., Seite 2086-94  |w (DE-627)NLM098181017  |x 0885-3010  |7 nnns 
773 1 8 |g volume:53  |g year:2006  |g number:11  |g day:11  |g month:11  |g pages:2086-94 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 53  |j 2006  |e 11  |b 11  |c 11  |h 2086-94