|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM166620114 |
003 |
DE-627 |
005 |
20250207190701.0 |
007 |
tu |
008 |
231223s2007 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0556.xml
|
035 |
|
|
|a (DE-627)NLM166620114
|
035 |
|
|
|a (NLM)17108390
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Huxley, Martin N
|e verfasserin
|4 aut
|
245 |
1 |
4 |
|a The number of N-point digital discs
|
264 |
|
1 |
|c 2007
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 30.01.2007
|
500 |
|
|
|a Date Revised 19.11.2006
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a A digital disc is the set of all integer points inside some given disc. Let {\cal D}_{N} be the number of different digital discs consisting of N points (different up to translation). The upper bound D(N) = O(N(2)) was shown recently; no corresponding lower bound is known. In this paper, we refine the upper bound to D(N) = O(N), which seems to be the true order of magnitude, and we show that the average [formula: see text] has upper and lower bounds which are of polynomial growth in N
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Zunić, Jovisa
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1998
|g 29(2007), 1 vom: 16. Jan., Seite 159-61
|w (DE-627)NLM098212257
|x 0162-8828
|7 nnns
|
773 |
1 |
8 |
|g volume:29
|g year:2007
|g number:1
|g day:16
|g month:01
|g pages:159-61
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 29
|j 2007
|e 1
|b 16
|c 01
|h 159-61
|