Tracking people by learning their appearance

An open vision problem is to automatically track the articulations of people from a video sequence. This problem is difficult because one needs to determine both the number of people in each frame and estimate their configurations. But, finding people and localizing their limbs is hard because peopl...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1998. - 29(2007), 1 vom: 16. Jan., Seite 65-81
1. Verfasser: Ramanan, Deva (VerfasserIn)
Weitere Verfasser: Forsyth, David A, Zisserman, Andrew
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM16662005X
003 DE-627
005 20250207190700.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0556.xml 
035 |a (DE-627)NLM16662005X 
035 |a (NLM)17108384 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ramanan, Deva  |e verfasserin  |4 aut 
245 1 0 |a Tracking people by learning their appearance 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 30.01.2007 
500 |a Date Revised 10.11.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a An open vision problem is to automatically track the articulations of people from a video sequence. This problem is difficult because one needs to determine both the number of people in each frame and estimate their configurations. But, finding people and localizing their limbs is hard because people can move fast and unpredictably, can appear in a variety of poses and clothes, and are often surrounded by limb-like clutter. We develop a completely automatic system that works in two stages; it first builds a model of appearance of each person in a video and then it tracks by detecting those models in each frame ("tracking by model-building and detection"). We develop two algorithms that build models; one bottom-up approach groups together candidate body parts found throughout a sequence. We also describe a top-down approach that automatically builds people-models by detecting convenient key poses within a sequence. We finally show that building a discriminative model of appearance is quite helpful since it exploits structure in a background (without background-subtraction). We demonstrate the resulting tracker on hundreds of thousands of frames of unscripted indoor and outdoor activity, a feature-length film ("Run Lola Run"), and legacy sports footage (from the 2002 World Series and 1998 Winter Olympics). Experiments suggest that our system 1) can count distinct individuals, 2) can identify and track them, 3) can recover when it loses track, for example, if individuals are occluded or briefly leave the view, 4) can identify body configuration accurately, and 5) is not dependent on particular models of human motion 
650 4 |a Journal Article 
700 1 |a Forsyth, David A  |e verfasserin  |4 aut 
700 1 |a Zisserman, Andrew  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1998  |g 29(2007), 1 vom: 16. Jan., Seite 65-81  |w (DE-627)NLM098212257  |x 0162-8828  |7 nnns 
773 1 8 |g volume:29  |g year:2007  |g number:1  |g day:16  |g month:01  |g pages:65-81 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 1  |b 16  |c 01  |h 65-81