Graph embedding and extensions : a general framework for dimensionality reduction

Over the past few decades, a large family of algorithms - supervised or unsupervised; stemming from statistics or geometry theory - has been designed to provide different solutions to the problem of dimensionality reduction. Despite the different motivations of these algorithms, we present in this p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 29(2007), 1 vom: 16. Jan., Seite 40-51
1. Verfasser: Yan, Shuicheng (VerfasserIn)
Weitere Verfasser: Xu, Dong, Zhang, Benyu, Zhang, Hong-Jiang, Yang, Qiang, Lin, Stephen
Format: Aufsatz
Sprache:English
Veröffentlicht: 2007
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM166620033
003 DE-627
005 20231223111201.0
007 tu
008 231223s2007 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0556.xml 
035 |a (DE-627)NLM166620033 
035 |a (NLM)17108382 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yan, Shuicheng  |e verfasserin  |4 aut 
245 1 0 |a Graph embedding and extensions  |b a general framework for dimensionality reduction 
264 1 |c 2007 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 30.01.2007 
500 |a Date Revised 19.11.2006 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Over the past few decades, a large family of algorithms - supervised or unsupervised; stemming from statistics or geometry theory - has been designed to provide different solutions to the problem of dimensionality reduction. Despite the different motivations of these algorithms, we present in this paper a general formulation known as graph embedding to unify them within a common framework. In graph embedding, each algorithm can be considered as the direct graph embedding or its linear/kernel/tensor extension of a specific intrinsic graph that describes certain desired statistical or geometric properties of a data set, with constraints from scale normalization or a penalty graph that characterizes a statistical or geometric property that should be avoided. Furthermore, the graph embedding framework can be used as a general platform for developing new dimensionality reduction algorithms. By utilizing this framework as a tool, we propose a new supervised dimensionality reduction algorithm called Marginal Fisher Analysis in which the intrinsic graph characterizes the intraclass compactness and connects each data point with its neighboring points of the same class, while the penalty graph connects the marginal points and characterizes the interclass separability. We show that MFA effectively overcomes the limitations of the traditional Linear Discriminant Analysis algorithm due to data distribution assumptions and available projection directions. Real face recognition experiments show the superiority of our proposed MFA in comparison to LDA, also for corresponding kernel and tensor extensions 
650 4 |a Journal Article 
700 1 |a Xu, Dong  |e verfasserin  |4 aut 
700 1 |a Zhang, Benyu  |e verfasserin  |4 aut 
700 1 |a Zhang, Hong-Jiang  |e verfasserin  |4 aut 
700 1 |a Yang, Qiang  |e verfasserin  |4 aut 
700 1 |a Lin, Stephen  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 29(2007), 1 vom: 16. Jan., Seite 40-51  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:29  |g year:2007  |g number:1  |g day:16  |g month:01  |g pages:40-51 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 29  |j 2007  |e 1  |b 16  |c 01  |h 40-51