Recovering facial shape using a statistical model of surface normal direction

In this paper, we show how a statistical model of facial shape can be embedded within a shape-from-shading algorithm. We describe how facial shape can be captured using a statistical model of variations in surface normal direction. To construct this model, we make use of the azimuthal equidistant pr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 28(2006), 12 vom: 16. Dez., Seite 1914-30
1. Verfasser: Smith, William A P (VerfasserIn)
Weitere Verfasser: Hancock, Edwin R
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Evaluation Study Journal Article
LEADER 01000naa a22002652 4500
001 NLM166619868
003 DE-627
005 20231223111201.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0556.xml 
035 |a (DE-627)NLM166619868 
035 |a (NLM)17108367 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Smith, William A P  |e verfasserin  |4 aut 
245 1 0 |a Recovering facial shape using a statistical model of surface normal direction 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 26.12.2006 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, we show how a statistical model of facial shape can be embedded within a shape-from-shading algorithm. We describe how facial shape can be captured using a statistical model of variations in surface normal direction. To construct this model, we make use of the azimuthal equidistant projection to map the distribution of surface normals from the polar representation on a unit sphere to Cartesian points on a local tangent plane. The distribution of surface normal directions is captured using the covariance matrix for the projected point positions. The eigenvectors of the covariance matrix define the modes of shape-variation in the fields of transformed surface normals. We show how this model can be trained using surface normal data acquired from range images and how to fit the model to intensity images of faces using constraints on the surface normal direction provided by Lambert's law. We demonstrate that the combination of a global statistical constraint and local irradiance constraint yields an efficient and accurate approach to facial shape recovery and is capable of recovering fine local surface details. We assess the accuracy of the technique on a variety of images with ground truth and real-world images 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
700 1 |a Hancock, Edwin R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 28(2006), 12 vom: 16. Dez., Seite 1914-30  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:28  |g year:2006  |g number:12  |g day:16  |g month:12  |g pages:1914-30 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2006  |e 12  |b 16  |c 12  |h 1914-30