Jasmonates induce Nod factor production by Bradyrhizobium japonicum

Jasmonates are signaling molecules involved in induced systemic resistance, wounding and stress responses of plants. We have previously demonstrated that jasmonates can induce nod genes of Bradyrhizobium japonicum when measured by beta-galactosidase activity. In order to test whether jasmonates can...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 44(2006), 11-12 vom: 15. Nov., Seite 759-65
1. Verfasser: Mabood, F (VerfasserIn)
Weitere Verfasser: Souleimanov, A, Khan, W, Smith, D L
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Cyclopentanes Lipopolysaccharides Nod factor IV, Bradyrhizobium japonicum Oxylipins Plant Growth Regulators jasmonic acid 6RI5N05OWW Genistein DH2M523P0H
Beschreibung
Zusammenfassung:Jasmonates are signaling molecules involved in induced systemic resistance, wounding and stress responses of plants. We have previously demonstrated that jasmonates can induce nod genes of Bradyrhizobium japonicum when measured by beta-galactosidase activity. In order to test whether jasmonates can effectively induce the production and secretion of Nod factors (lipo-chitooligosaccharides, LCOs) from B. japonicum, we induced two B. japonicum strains, 532C and USDA3, with jasmonic acid (JA), methyl jasmonate (MeJA) and genistein (Ge). As genistein is well characterized as an inducer of nod genes it was used a positive control. The high-performance liquid chromatography (HPLC) profile of LCOs isolated following treatment with jasmonates or genistein showed that both JA and MeJA effectively induced nod genes and caused production of LCOs from bacterial cultures. JA and MeJA are more efficacious inducers of LCO production than genistein. Genistein plus JA or MeJA resulted in greater LCO production than either alone. A soybean root hair deformation assay showed that jasmonate induced LCOs were as effective as those induced by genistein. This is the first report that jasmonates induce Nod factor production by B. japonicum. This report establishes the role of jasmonates as a new class of signaling molecules in the Bradyrhizobium-soybean symbiosis
Beschreibung:Date Completed 28.02.2007
Date Revised 13.12.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690