Frequency-temperature behavior of flexural quartz resonators by means of Timoshenko's model
The frequency of a flexural resonator and its frequency-temperature behavior usually are computed by Bernoulli's classical approximation. This approach is valid for beams with a large length-over-thickness-ratio. For shorter beams, the effects of shear stress and rotary inertia may play a signi...
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1999. - 53(2006), 11 vom: 21. Nov., Seite 2080-5 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2006
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
Schlagworte: | Journal Article |
Zusammenfassung: | The frequency of a flexural resonator and its frequency-temperature behavior usually are computed by Bernoulli's classical approximation. This approach is valid for beams with a large length-over-thickness-ratio. For shorter beams, the effects of shear stress and rotary inertia may play a significant role for temperature-compensated resonators. These effects have been taken into account for isotropic beams. The aim of this paper is to discuss the extension of the shear coefficient in the case of an anisotropic material and to compute the frequency-temperature characteristic of an (XYt)theta cut resonator when the shear stress and the rotary inertia have been taken into account. Comparisons between the classical approximation and this treatment are given for quartz. Furthermore, the numerical predictions obtained by means of different sets of data available for thermal sensitivities of elastic coefficients are compared |
---|---|
Beschreibung: | Date Completed 13.12.2006 Date Revised 17.09.2019 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 0885-3010 |