Measuring data abstraction quality in multiresolution visualizations

Data abstraction techniques are widely used in multiresolution visualization systems to reduce visual clutter and facilitate analysis from overview to detail. However, analysts are usually unaware of how well the abstracted data represent the original dataset, which can impact the reliability of res...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1998. - 12(2006), 5 vom: 11. Sept., Seite 709-16
1. Verfasser: Cui, Qingguang (VerfasserIn)
Weitere Verfasser: Ward, Matthew O, Rundensteiner, Elke A, Yang, Jing
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM166361720
003 DE-627
005 20250207181545.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0555.xml 
035 |a (DE-627)NLM166361720 
035 |a (NLM)17080791 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Cui, Qingguang  |e verfasserin  |4 aut 
245 1 0 |a Measuring data abstraction quality in multiresolution visualizations 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 12.01.2007 
500 |a Date Revised 03.11.2006 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Data abstraction techniques are widely used in multiresolution visualization systems to reduce visual clutter and facilitate analysis from overview to detail. However, analysts are usually unaware of how well the abstracted data represent the original dataset, which can impact the reliability of results gleaned from the abstractions. In this paper, we define two data abstraction quality measures for computing the degree to which the abstraction conveys the original dataset: the Histogram Difference Measure and the Nearest Neighbor Measure. They have been integrated within XmdvTool, a public-domain multiresolution visualization system for multivariate data analysis that supports sampling as well as clustering to simplify data. Several interactive operations are provided, including adjusting the data abstraction level, changing selected regions, and setting the acceptable data abstraction quality level. Conducting these operations, analysts can select an optimal data abstraction level. Also, analysts can compare different abstraction methods using the measures to see how well relative data density and outliers are maintained, and then select an abstraction method that meets the requirement of their analytic tasks 
650 4 |a Journal Article 
700 1 |a Ward, Matthew O  |e verfasserin  |4 aut 
700 1 |a Rundensteiner, Elke A  |e verfasserin  |4 aut 
700 1 |a Yang, Jing  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1998  |g 12(2006), 5 vom: 11. Sept., Seite 709-16  |w (DE-627)NLM098269445  |x 1077-2626  |7 nnns 
773 1 8 |g volume:12  |g year:2006  |g number:5  |g day:11  |g month:09  |g pages:709-16 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 12  |j 2006  |e 5  |b 11  |c 09  |h 709-16