A statistical evaluation of recent full reference image quality assessment algorithms

Measurement of visual quality is of fundamental importance for numerous image and video processing applications, where the goal of quality assessment (QA) algorithms is to automatically assess the quality of images or videos in agreement with human quality judgments. Over the years, many researchers...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 15(2006), 11 vom: 14. Nov., Seite 3440-51
1. Verfasser: Sheikh, Hamid Rahim (VerfasserIn)
Weitere Verfasser: Sabir, Muhammad Farooq, Bovik, Alan Conrad
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article Research Support, U.S. Gov't, Non-P.H.S. Validation Study
LEADER 01000naa a22002652 4500
001 NLM166320102
003 DE-627
005 20231223110545.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0555.xml 
035 |a (DE-627)NLM166320102 
035 |a (NLM)17076403 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sheikh, Hamid Rahim  |e verfasserin  |4 aut 
245 1 2 |a A statistical evaluation of recent full reference image quality assessment algorithms 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 28.11.2006 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Measurement of visual quality is of fundamental importance for numerous image and video processing applications, where the goal of quality assessment (QA) algorithms is to automatically assess the quality of images or videos in agreement with human quality judgments. Over the years, many researchers have taken different approaches to the problem and have contributed significant research in this area and claim to have made progress in their respective domains. It is important to evaluate the performance of these algorithms in a comparative setting and analyze the strengths and weaknesses of these methods. In this paper, we present results of an extensive subjective quality assessment study in which a total of 779 distorted images were evaluated by about two dozen human subjects. The "ground truth" image quality data obtained from about 25,000 individual human quality judgments is used to evaluate the performance of several prominent full-reference image quality assessment algorithms. To the best of our knowledge, apart from video quality studies conducted by the Video Quality Experts Group, the study presented in this paper is the largest subjective image quality study in the literature in terms of number of images, distortion types, and number of human judgments per image. Moreover, we have made the data from the study freely available to the research community. This would allow other researchers to easily report comparative results in the future 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
650 4 |a Validation Study 
700 1 |a Sabir, Muhammad Farooq  |e verfasserin  |4 aut 
700 1 |a Bovik, Alan Conrad  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 15(2006), 11 vom: 14. Nov., Seite 3440-51  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:15  |g year:2006  |g number:11  |g day:14  |g month:11  |g pages:3440-51 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2006  |e 11  |b 14  |c 11  |h 3440-51