Characterization and surface reactivity of ferrihydrite nanoparticles assembled in ferritin

Ferrihydrite nanoparticles with nominal sizes of 3 and 6 nm were assembled within ferritin, an iron storage protein. The crystallinity and structure of the nanoparticles (after removal of the protein shell) were evaluated by high-resolution transmission electron microscopy (HRTEM), atomic force micr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 22(2006), 22 vom: 24. Okt., Seite 9313-21
1. Verfasser: Liu, Gang (VerfasserIn)
Weitere Verfasser: Debnath, Sudeep, Paul, Kristian W, Han, Weiqiang, Hausner, Douglas B, Hosein, Hazel-Ann, Michel, F Marc, Parise, John B, Sparks, Donald L, Strongin, Daniel R
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Ferric Compounds Sulfur Dioxide 0UZA3422Q4 ferric oxyhydroxide 87PZU03K0K Ferritins 9007-73-2
Beschreibung
Zusammenfassung:Ferrihydrite nanoparticles with nominal sizes of 3 and 6 nm were assembled within ferritin, an iron storage protein. The crystallinity and structure of the nanoparticles (after removal of the protein shell) were evaluated by high-resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM), and scanning tunneling microscopy (STM). HRTEM showed that amorphous and crystalline nanoparticles were copresent, and the degree of crystallinity improved with increasing size of the particles. The dominant phase of the crystalline nanoparticles was ferrihydrite. Morphology and electronic structure of the nanoparticles were characterized by AFM and STM. Scanning tunneling spectroscopy (STS) measurements suggested that the band gap associated with the 6 nm particles was larger than the band gap associated with the 3 nm particles. Interaction of SO2(g) with the nanoparticles was investigated by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy, and results were interpreted with the aid of molecular orbital/density functional theory (MO/DFT) frequency calculations. Reaction of SO2(g) with the nanoparticles resulted primarily in SO(3)2- surface species. The concentration of SO3(2-) appeared to be dependent on the ferrihydrite particle size (or differences in structural properties)
Beschreibung:Date Completed 19.09.2007
Date Revised 24.11.2016
published: Print
Citation Status MEDLINE
ISSN:1520-5827