Image and texture segmentation using local spectral histograms

We present a method for segmenting images consisting of texture and nontexture regions based on local spectral histograms. Defined as a vector consisting of marginal distributions of chosen filter responses, local spectral histograms provide a feature statistic for both types of regions. Using local...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1997. - 15(2006), 10 vom: 08. Okt., Seite 3066-77
1. Verfasser: Liu, Xiuwen (VerfasserIn)
Weitere Verfasser: Wang, DeLiang
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM165808195
003 DE-627
005 20250207162536.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0553.xml 
035 |a (DE-627)NLM165808195 
035 |a (NLM)17022270 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Xiuwen  |e verfasserin  |4 aut 
245 1 0 |a Image and texture segmentation using local spectral histograms 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 20.11.2006 
500 |a Date Revised 26.10.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We present a method for segmenting images consisting of texture and nontexture regions based on local spectral histograms. Defined as a vector consisting of marginal distributions of chosen filter responses, local spectral histograms provide a feature statistic for both types of regions. Using local spectral histograms of homogeneous regions, we decompose the segmentation process into three stages. The first is the initial classification stage, where probability models for homogeneous texture and nontexture regions are derived and an initial segmentation result is obtained by classifying local windows. In the second stage, we give an algorithm that iteratively updates the segmentation using the derived probability models. The third is the boundary localization stage, where region boundaries are localized by building refined probability models that are sensitive to spatial patterns in segmented regions. We present segmentation results on texture as well as nontexture images. Our comparison with other methods shows that the proposed method produces more accurate segmentation results 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Wang, DeLiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1997  |g 15(2006), 10 vom: 08. Okt., Seite 3066-77  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:15  |g year:2006  |g number:10  |g day:08  |g month:10  |g pages:3066-77 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2006  |e 10  |b 08  |c 10  |h 3066-77