Hierarchical stochastic image grammars for classification and segmentation

We develop a new class of hierarchical stochastic image models called spatial random trees (SRTs) which admit polynomial-complexity exact inference algorithms. Our framework of multitree dictionaries is the starting point for this construction. SRTs are stochastic hidden tree models whose leaves are...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 15(2006), 10 vom: 08. Okt., Seite 3033-52
1. Verfasser: Wang, Wiley (VerfasserIn)
Weitere Verfasser: Pollak, Ilya, Wong, Tak-Shing, Bouman, Charles A, Harper, Mary P, Siskind, Jeffrey M
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM165808179
003 DE-627
005 20231223105505.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0553.xml 
035 |a (DE-627)NLM165808179 
035 |a (NLM)17022268 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Wiley  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical stochastic image grammars for classification and segmentation 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 20.11.2006 
500 |a Date Revised 26.10.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We develop a new class of hierarchical stochastic image models called spatial random trees (SRTs) which admit polynomial-complexity exact inference algorithms. Our framework of multitree dictionaries is the starting point for this construction. SRTs are stochastic hidden tree models whose leaves are associated with image data. The states at the tree nodes are random variables, and, in addition, the structure of the tree is random and is generated by a probabilistic grammar. We describe an efficient recursive algorithm for obtaining the maximum a posteriori estimate of both the tree structure and the tree states given an image. We also develop an efficient procedure for performing one iteration of the expectation-maximization algorithm and use it to estimate the model parameters from a set of training images. We address other inference problems arising in applications such as maximization of posterior marginals and hypothesis testing. Our models and algorithms are illustrated through several image classification and segmentation experiments, ranging from the segmentation of synthetic images to the classification of natural photographs and the segmentation of scanned documents. In each case, we show that our method substantially improves accuracy over a variety of existing methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Pollak, Ilya  |e verfasserin  |4 aut 
700 1 |a Wong, Tak-Shing  |e verfasserin  |4 aut 
700 1 |a Bouman, Charles A  |e verfasserin  |4 aut 
700 1 |a Harper, Mary P  |e verfasserin  |4 aut 
700 1 |a Siskind, Jeffrey M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 15(2006), 10 vom: 08. Okt., Seite 3033-52  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:15  |g year:2006  |g number:10  |g day:08  |g month:10  |g pages:3033-52 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2006  |e 10  |b 08  |c 10  |h 3033-52