Multidimensional multichannel FIR deconvolution using Gröbner bases

We present a new method for general multidimensional multichannel deconvolution with finite impulse response (FIR) convolution and deconvolution filters using Gröbner bases. Previous work formulates the problem of multichannel FIR deconvolution as the construction of a left inverse of the convolutio...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 15(2006), 10 vom: 08. Okt., Seite 2998-3007
1. Verfasser: Zhou, Jianping (VerfasserIn)
Weitere Verfasser: Do, Minh N
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM165808144
003 DE-627
005 20231223105505.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0553.xml 
035 |a (DE-627)NLM165808144 
035 |a (NLM)17022265 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, Jianping  |e verfasserin  |4 aut 
245 1 0 |a Multidimensional multichannel FIR deconvolution using Gröbner bases 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 20.11.2006 
500 |a Date Revised 26.10.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We present a new method for general multidimensional multichannel deconvolution with finite impulse response (FIR) convolution and deconvolution filters using Gröbner bases. Previous work formulates the problem of multichannel FIR deconvolution as the construction of a left inverse of the convolution matrix, which is solved by numerical linear algebra. However, this approach requires the prior information of the support of deconvolution filters. Using algebraic geometry and Gröbner bases, we find necessary and sufficient conditions for the existence of exact deconvolution FIR filters and propose simple algorithms to find these deconvolution filters. The main contribution of our work is to extend the previous Gröbner basis results on multidimensional multichannel deconvolution for polynomial or causal filters to general FIR filters. The proposed algorithms obtain a set of FIR deconvolution filters with a small number of nonzero coefficients (a desirable feature in the impulsive noise environment) and do not require the prior information of the support. Moreover, we provide a complete characterization of all exact deconvolution FIR filters, from which good FIR deconvolution filters under the additive white noise environment are found. Simulation results show that our approaches achieve good results under different noise settings 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Do, Minh N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 15(2006), 10 vom: 08. Okt., Seite 2998-3007  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:15  |g year:2006  |g number:10  |g day:08  |g month:10  |g pages:2998-3007 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2006  |e 10  |b 08  |c 10  |h 2998-3007