Optimal spatial adaptation for patch-based image denoising

A novel adaptive and patch-based approach is proposed for image denoising and representation. The method is based on a pointwise selection of small image patches of fixed size in the variable neighborhood of each pixel. Our contribution is to associate with each pixel the weighted sum of data points...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1997. - 15(2006), 10 vom: 08. Okt., Seite 2866-78
1. Verfasser: Kervrann, Charles (VerfasserIn)
Weitere Verfasser: Boulanger, Jérôme
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM165808047
003 DE-627
005 20250207162534.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0553.xml 
035 |a (DE-627)NLM165808047 
035 |a (NLM)17022255 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kervrann, Charles  |e verfasserin  |4 aut 
245 1 0 |a Optimal spatial adaptation for patch-based image denoising 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 20.11.2006 
500 |a Date Revised 26.10.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a A novel adaptive and patch-based approach is proposed for image denoising and representation. The method is based on a pointwise selection of small image patches of fixed size in the variable neighborhood of each pixel. Our contribution is to associate with each pixel the weighted sum of data points within an adaptive neighborhood, in a manner that it balances the accuracy of approximation and the stochastic error, at each spatial position. This method is general and can be applied under the assumption that there exists repetitive patterns in a local neighborhood of a point. By introducing spatial adaptivity, we extend the work earlier described by Buades et al. which can be considered as an extension of bilateral filtering to image patches. Finally, we propose a nearly parameter-free algorithm for image denoising. The method is applied to both artificially corrupted (white Gaussian noise) and real images and the performance is very close to, and in some cases even surpasses, that of the already published denoising methods 
650 4 |a Journal Article 
700 1 |a Boulanger, Jérôme  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1997  |g 15(2006), 10 vom: 08. Okt., Seite 2866-78  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:15  |g year:2006  |g number:10  |g day:08  |g month:10  |g pages:2866-78 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2006  |e 10  |b 08  |c 10  |h 2866-78