Self-assembly of polystyrene-block-poly(ethylene oxide) copolymers at the air-water interface : is dewetting the genesis of surface aggregate formation?
Block copolymer self-assembly at the air-water interface is commonly regarded as a two-dimensional counterpart of equilibrium block copolymer self-assembly in solution and in the bulk; however, the present analysis of atomic force microscopy (AFM) and isotherm data at different spreading concentrati...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 22(2006), 20 vom: 26. Sept., Seite 8387-96 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2006
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Block copolymer self-assembly at the air-water interface is commonly regarded as a two-dimensional counterpart of equilibrium block copolymer self-assembly in solution and in the bulk; however, the present analysis of atomic force microscopy (AFM) and isotherm data at different spreading concentrations suggests a nonequilibrium mechanism for the formation of various polystyrene-b-poly(ethylene oxide) (PS-b-PEO) aggregates (spaghetti, dots, rings, and chainlike aggregates) at the air-water interface starting with an initial dewetting of the copolymer spreading solution from the water surface. We show that different spreading concentrations provide kinetic snapshots of various stages of self-assembly at the air-water interface as a result of different degrees of PS chain entanglements in the spreading solution. Two block copolymers are investigated: MW = 141k (11.4 wt % PEO) and MW = 185k (18.9 wt % PEO). Langmuir compression isotherms for the 185k sample deposited from a range of spreading concentrations (0.1-2.0 mg/mL) indicate less dense packing of copolymer chains within aggregate cores formed at lower spreading concentrations due to a competition between the interfacial adsorption of PEO blocks and the kinetic restrictions of PS chain entanglements. From AFM analysis of the transferred Langmuir-Blodgett films, it is clear that PS chain entanglements in the spreading solution also affect the morphological evolution of surface aggregates for both samples, with earlier structures being trapped at higher concentrations. At the highest spreading concentration for the 141k copolymer, the coexistence of long spaghetti aggregates with cellular arrays of holes, along with various transition structures, indicates that various surface aggregates evolve from networks of rims formed as a result of dewetting of the evaporating spreading solution from the water surface |
---|---|
Beschreibung: | Date Completed 11.09.2007 Date Revised 19.09.2006 published: Print Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |