Computer simulation of the adsorption of thiophene in all-silica Y and Na-Y

A grand canonical ensemble Monte Carlo simulation is performed to investigate the adsorption, heat of adsorption, and distributions of thiophene in all-silica Y and Na-Y zeolites. Biased particle insertions and deletions were implemented to allow the computation of equilibrium adsorption isotherms o...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1991. - 22(2006), 20 vom: 26. Sept., Seite 8353-8
1. Verfasser: Ju, Shen-Gui (VerfasserIn)
Weitere Verfasser: Zeng, Yong-Ping, Xing, Wei-Hong, Chen, Chang-Lin
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:A grand canonical ensemble Monte Carlo simulation is performed to investigate the adsorption, heat of adsorption, and distributions of thiophene in all-silica Y and Na-Y zeolites. Biased particle insertions and deletions were implemented to allow the computation of equilibrium adsorption isotherms of such molecules. The calculated number of absorbed thiophene molecules in these zeolites is in good agreement with the experimental data. The calculated results show that the number absorbed of thiophene molecules in Na-Y is much greater than that in all-silica Y over the range of pressure. The calculated heat of adsorption is in good agreement with experimental results. The Na-Y zeolite, rather than all-silica Y, preferentially adsorbs the thiophene. A distribution analysis of the adsorbed phase structure reveals a different adsorption site in the zeolites
Beschreibung:Date Completed 11.09.2007
Date Revised 19.09.2006
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:0743-7463