Cell mechanics using atomic force microscopy-based single-cell compression

We report herein the establishment of a single-cell compression method based on force measurements in atomic force microscopy (AFM). The high-resolution bright-field or confocal laser scanning microscopy guides the location of the AFM probe and then monitors the deformation of cell shape, while micr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 22(2006), 19 vom: 12. Sept., Seite 8151-5
1. Verfasser: Lulevich, Valentin (VerfasserIn)
Weitere Verfasser: Zink, Tiffany, Chen, Huan-Yuan, Liu, Fu-Tong, Liu, Gang-Yu
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, N.I.H., Extramural Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM165177330
003 DE-627
005 20231223104143.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0551.xml 
035 |a (DE-627)NLM165177330 
035 |a (NLM)16952255 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lulevich, Valentin  |e verfasserin  |4 aut 
245 1 0 |a Cell mechanics using atomic force microscopy-based single-cell compression 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 06.09.2007 
500 |a Date Revised 19.10.2016 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We report herein the establishment of a single-cell compression method based on force measurements in atomic force microscopy (AFM). The high-resolution bright-field or confocal laser scanning microscopy guides the location of the AFM probe and then monitors the deformation of cell shape, while microsphere-modified AFM probes compress the cell and measure the force. Force and deformation profiles of living cells reveal a cubic relationship at small deformation (<30%), multiple peaks at 30-70% compression, and a rapid increase at over 80% deformation. The initial compression may be described qualitatively and quantitatively using a simple model of a nonpermeable balloon filled with incompressible fluid. Stress peaks reflect cell membrane rupture, followed by the deformation and rupture of intracellular components, beyond which the cell responses become irreversible. The Young's modulus and bending constant of living cell membranes are extracted from the balloon models, with 10-30 MPa and 17-52 kT, respectively. The initial compression of dead and fixed cells is modeled using Hertzian contact theory, assuming that the cell is a homogeneous sphere. Dead cells exhibit a cytoskeleton elasticity of 4-7.5 kPa, while fixation treatment leads to a dramatic increase in the cytoskeletal Young's modulus (150-230 kPa) due to protein cross-linking by imine bonds. These results demonstrate the high sensitivity of the single-cell compression method to the molecular-level structural changes of cells, which suggests a new generic platform for investigating cell mechanics in tissue engineering and cancer research 
650 4 |a Journal Article 
650 4 |a Research Support, N.I.H., Extramural 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Zink, Tiffany  |e verfasserin  |4 aut 
700 1 |a Chen, Huan-Yuan  |e verfasserin  |4 aut 
700 1 |a Liu, Fu-Tong  |e verfasserin  |4 aut 
700 1 |a Liu, Gang-Yu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 22(2006), 19 vom: 12. Sept., Seite 8151-5  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:22  |g year:2006  |g number:19  |g day:12  |g month:09  |g pages:8151-5 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 22  |j 2006  |e 19  |b 12  |c 09  |h 8151-5