Multigrid tomographic inversion with variable resolution data and image spaces

A multigrid inversion approach that uses variable resolutions of both the data space and the image space is proposed. Since the computational complexity of inverse problems typically increases with a larger number of unknown image pixels and a larger number of measurements, the proposed algorithm fu...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1997. - 15(2006), 9 vom: 12. Sept., Seite 2805-19
Auteur principal: Oh, Seungseok (Auteur)
Autres auteurs: Bouman, Charles A, Webb, Kevin J
Format: Article
Langue:English
Publié: 2006
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM165139722
003 DE-627
005 20250207142408.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0551.xml 
035 |a (DE-627)NLM165139722 
035 |a (NLM)16948324 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Oh, Seungseok  |e verfasserin  |4 aut 
245 1 0 |a Multigrid tomographic inversion with variable resolution data and image spaces 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 26.09.2006 
500 |a Date Revised 26.10.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a A multigrid inversion approach that uses variable resolutions of both the data space and the image space is proposed. Since the computational complexity of inverse problems typically increases with a larger number of unknown image pixels and a larger number of measurements, the proposed algorithm further reduces the computation relative to conventional multigrid approaches, which change only the image space resolution at coarse scales. The advantage is particularly important for data-rich applications, where data resolutions may differ for different scales. Applications of the approach to Bayesian reconstruction algorithms in transmission and emission tomography with a generalized Gaussian Markov random field image prior are presented, both with a Poisson noise model and with a quadratic data term. Simulation results indicate that the proposed multigrid approach results in significant improvement in convergence speed compared to the fixed-grid iterative coordinate descent method and a multigrid method with fixed-data resolution 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Bouman, Charles A  |e verfasserin  |4 aut 
700 1 |a Webb, Kevin J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1997  |g 15(2006), 9 vom: 12. Sept., Seite 2805-19  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:15  |g year:2006  |g number:9  |g day:12  |g month:09  |g pages:2805-19 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2006  |e 9  |b 12  |c 09  |h 2805-19