|
|
|
|
LEADER |
01000caa a22002652c 4500 |
001 |
NLM165088362 |
003 |
DE-627 |
005 |
20250207141458.0 |
007 |
tu |
008 |
231223s2006 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed25n0550.xml
|
035 |
|
|
|a (DE-627)NLM165088362
|
035 |
|
|
|a (NLM)16941997
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Hall, William J
|e verfasserin
|4 aut
|
245 |
1 |
2 |
|a A novel additive for the reduction of acid gases and NO(x) in municipal waste incinerator flue gas
|
264 |
|
1 |
|c 2006
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 05.12.2006
|
500 |
|
|
|a Date Revised 14.02.2017
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a The reduction of SO2, HCl, and NO(x) concentrations using calcium magnesium acetate (CMA) as a novel sorbent in a simulated municipal waste incinerator flue gas was investigated. The reduction of individual SO2, HCl, and NO(x) concentrations was tested at 850 degrees C and it was found that CMA could reduce the SO2 concentration by 74%, HCl concentration by 64%, or NO(x) concentration by 94%. It was observed that individual SO2 or HCl capture increased with increasing initial oxygen concentration in the reacting gas or increasing sorbent input. NO(x) reduction decreased with increasing initial oxygen concentration in the reacting gas. The simultaneous reduction of SO2, HCl, and NO(x) concentrations by CMA was also investigated. It was found that CMA could simultaneously capture 60% SO2 and 61% HCl and reduce NO(x) concentrations by 26%, when the initial oxygen concentration in the reacting gas was 4%. During the simultaneous reduction of SO2, HCl, and NO(x), it was noted that as the initial oxygen concentration in the reacting gas increased, the efficiency of SO2 capture increased too, but the efficiency of HCl capture and the efficiency of NO(x) destruction decreased
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Acetates
|2 NLM
|
650 |
|
7 |
|a Air Pollutants
|2 NLM
|
650 |
|
7 |
|a Calcium Compounds
|2 NLM
|
650 |
|
7 |
|a Magnesium Compounds
|2 NLM
|
650 |
|
7 |
|a Sulfur Dioxide
|2 NLM
|
650 |
|
7 |
|a 0UZA3422Q4
|2 NLM
|
650 |
|
7 |
|a Nitric Oxide
|2 NLM
|
650 |
|
7 |
|a 31C4KY9ESH
|2 NLM
|
650 |
|
7 |
|a Hydrochloric Acid
|2 NLM
|
650 |
|
7 |
|a QTT17582CB
|2 NLM
|
650 |
|
7 |
|a Oxygen
|2 NLM
|
650 |
|
7 |
|a S88TT14065
|2 NLM
|
700 |
1 |
|
|a Williams, Paul T
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Waste management & research : the journal of the International Solid Wastes and Public Cleansing Association, ISWA
|d 1991
|g 24(2006), 4 vom: 23. Aug., Seite 388-96
|w (DE-627)NLM098164791
|x 1096-3669
|7 nnas
|
773 |
1 |
8 |
|g volume:24
|g year:2006
|g number:4
|g day:23
|g month:08
|g pages:388-96
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 24
|j 2006
|e 4
|b 23
|c 08
|h 388-96
|