Face recognition using recursive Fisher linear discriminant

Fisher linear discriminant (FLD) has recently emerged as a more efficient approach for extracting features for many pattern classification problems as compared to traditional principal component analysis. However, the constraint on the total number of features available from FLD has seriously limite...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 15(2006), 8 vom: 10. Aug., Seite 2097-105
1. Verfasser: Xiang, C (VerfasserIn)
Weitere Verfasser: Fan, X A, Lee, T H
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM164698949
003 DE-627
005 20231223103101.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0549.xml 
035 |a (DE-627)NLM164698949 
035 |a (NLM)16900667 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xiang, C  |e verfasserin  |4 aut 
245 1 0 |a Face recognition using recursive Fisher linear discriminant 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 12.09.2006 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Fisher linear discriminant (FLD) has recently emerged as a more efficient approach for extracting features for many pattern classification problems as compared to traditional principal component analysis. However, the constraint on the total number of features available from FLD has seriously limited its application to a large class of problems. In order to overcome this disadvantage, a recursive procedure of calculating the discriminant features is suggested in this paper. The new algorithm incorporates the same fundamental idea behind FLD of seeking the projection that best separates the data corresponding to different classes, while in contrast to FLD the number of features that may be derived is independent of the number of the classes to be recognized. Extensive experiments of comparing the new algorithm with the traditional approaches have been carried out on face recognition problem with the Yale database, in which the resulting improvement of the performances by the new feature extraction scheme is significant 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Fan, X A  |e verfasserin  |4 aut 
700 1 |a Lee, T H  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 15(2006), 8 vom: 10. Aug., Seite 2097-105  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:15  |g year:2006  |g number:8  |g day:10  |g month:08  |g pages:2097-105 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2006  |e 8  |b 10  |c 08  |h 2097-105