Minimum sequence requirements for selective RNA-ligand binding : a molecular mechanics algorithm using molecular dynamics and free-energy techniques

(c) 2006 Wiley Periodicals, Inc. J Comput Chem, 2006.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 27(2006), 14 vom: 15. Nov., Seite 1631-40
1. Verfasser: Anderson, Peter C (VerfasserIn)
Weitere Verfasser: Mecozzi, Sandro
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Ligands Paromomycin 61JJC8N5ZK RNA 63231-63-0 Sodium 9NEZ333N27 Theophylline C137DTR5RG
LEADER 01000naa a22002652 4500
001 NLM164697284
003 DE-627
005 20231223103059.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0549.xml 
035 |a (DE-627)NLM164697284 
035 |a (NLM)16900493 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Anderson, Peter C  |e verfasserin  |4 aut 
245 1 0 |a Minimum sequence requirements for selective RNA-ligand binding  |b a molecular mechanics algorithm using molecular dynamics and free-energy techniques 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 03.08.2007 
500 |a Date Revised 21.11.2013 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a (c) 2006 Wiley Periodicals, Inc. J Comput Chem, 2006. 
520 |a In vitro evolution techniques allow RNA molecules with unique functions to be developed. However, these techniques do not necessarily identify the simplest RNA structures for performing their functions. Determining the simplest RNA that binds to a particular ligand is currently limited to experimental protocols. Here, we introduce a molecular-mechanics based algorithm employing molecular dynamics simulations and free-energy methods to predict the minimum sequence requirements for selective ligand binding to RNA. The algorithm involves iteratively deleting nucleotides from an experimentally determined structure of an RNA-ligand complex, performing energy minimizations and molecular dynamics on each truncated structure, and assessing which truncations do not prohibit RNA binding to the ligand. The algorithm allows prediction of the effects of sequence modifications on RNA structural stability and ligand-binding energy. We have implemented the algorithm in the AMBER suite of programs, but it could be implemented in any molecular mechanics force field parameterized for nucleic acids. Test cases are presented to show the utility and accuracy of the methodology 
650 4 |a Journal Article 
650 7 |a Ligands  |2 NLM 
650 7 |a Paromomycin  |2 NLM 
650 7 |a 61JJC8N5ZK  |2 NLM 
650 7 |a RNA  |2 NLM 
650 7 |a 63231-63-0  |2 NLM 
650 7 |a Sodium  |2 NLM 
650 7 |a 9NEZ333N27  |2 NLM 
650 7 |a Theophylline  |2 NLM 
650 7 |a C137DTR5RG  |2 NLM 
700 1 |a Mecozzi, Sandro  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 27(2006), 14 vom: 15. Nov., Seite 1631-40  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:27  |g year:2006  |g number:14  |g day:15  |g month:11  |g pages:1631-40 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2006  |e 14  |b 15  |c 11  |h 1631-40