Hydrolysis of return sludge for production of easily biodegradable carbon : effect of pre-treatment, sludge age and temperature
Return sludge from two Swedish and two Danish wastewater treatment plants were hydrolysed in laboratory reactors. Treatment plants with/without pre-sedimentation and with/without nitrification were represented. Soluble organic matter was produced from all types of sludge, but the yield was to a larg...
Veröffentlicht in: | Water science and technology : a journal of the International Association on Water Pollution Research. - 1986. - 53(2006), 12 vom: 24., Seite 47-54 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2006
|
Zugriff auf das übergeordnete Werk: | Water science and technology : a journal of the International Association on Water Pollution Research |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Organic Chemicals Phosphates Sewage Ammonia 7664-41-7 |
Zusammenfassung: | Return sludge from two Swedish and two Danish wastewater treatment plants were hydrolysed in laboratory reactors. Treatment plants with/without pre-sedimentation and with/without nitrification were represented. Soluble organic matter was produced from all types of sludge, but the yield was to a large extent dependent on what type of sludge was hydrolysed. Activated sludge from wastewater treatment plants without pre-treatment returned more soluble carbon after hydrolysis than sludge from treatment plants with pre-sedimentation. In addition, more soluble carbon was formed from non-nitrifying activated sludge than from nitrifying sludge. Moreover, the maximum yield of soluble COD at 10 degrees C was less than the yield at 20 degrees C. The initial hydrolysis rate was found to be between 0.35 and 1.8 mg soluble COD/(g VS x h). With the exception of one case, between 15 and 50% of the produced soluble COD was shown to be volatile fatty acids, a suitable carbon source for biological phosphorus removal. Nitrification rate measurements indicated that the viability of the activated sludge was not affected by the hydrolysis |
---|---|
Beschreibung: | Date Completed 07.09.2006 Date Revised 17.09.2019 published: Print Citation Status MEDLINE |
ISSN: | 0273-1223 |