Shape registration in implicit spaces using information theory and free form deformations

We present a novel, variational and statistical approach for shape registration. Shapes of interest are implicitly embedded in a higher-dimensional space of distance transforms. In this implicit embedding space, registration is formulated in a hierarchical manner: the Mutual Information criterion su...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 28(2006), 8 vom: 15. Aug., Seite 1303-18
1. Verfasser: Huang, Xiaolei (VerfasserIn)
Weitere Verfasser: Paragios, Nikos, Metaxas, Dimitris N
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM164568360
003 DE-627
005 20231223102808.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0549.xml 
035 |a (DE-627)NLM164568360 
035 |a (NLM)16886865 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Huang, Xiaolei  |e verfasserin  |4 aut 
245 1 0 |a Shape registration in implicit spaces using information theory and free form deformations 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 05.09.2006 
500 |a Date Revised 04.08.2006 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We present a novel, variational and statistical approach for shape registration. Shapes of interest are implicitly embedded in a higher-dimensional space of distance transforms. In this implicit embedding space, registration is formulated in a hierarchical manner: the Mutual Information criterion supports various transformation models and is optimized to perform global registration; then, a B-spline-based Incremental Free Form Deformations (IFFD) model is used to minimize a Sum-of-Squared-Differences (SSD) measure and further recover a dense local nonrigid registration field. The key advantage of such framework is twofold: (1) it naturally deals with shapes of arbitrary dimension (2D, 3D, or higher) and arbitrary topology (multiple parts, closed/open) and (2) it preserves shape topology during local deformation and produces local registration fields that are smooth, continuous, and establish one-to-one correspondences. Its invariance to initial conditions is evaluated through empirical validation, and various hard 2D/3D geometric shape registration examples are used to show its robustness to noise, severe occlusion, and missing parts. We demonstrate the power of the proposed framework using two applications: one for statistical modeling of anatomical structures, another for 3D face scan registration and expression tracking. We also compare the performance of our algorithm with that of several other well-known shape registration algorithms 
650 4 |a Journal Article 
700 1 |a Paragios, Nikos  |e verfasserin  |4 aut 
700 1 |a Metaxas, Dimitris N  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 28(2006), 8 vom: 15. Aug., Seite 1303-18  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:28  |g year:2006  |g number:8  |g day:15  |g month:08  |g pages:1303-18 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2006  |e 8  |b 15  |c 08  |h 1303-18