Directionlets : anisotropic multidirectional representation with separable filtering

In spite of the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency of its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions. One-dimensional (1-D) discontinuities in images (edges a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1997. - 15(2006), 7 vom: 30. Juli, Seite 1916-33
1. Verfasser: Velisavljević, Vladan (VerfasserIn)
Weitere Verfasser: Beferull-Lozano, Baltasar, Vetterli, Martin, Dragotti, Pier Luigi
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:In spite of the success of the standard wavelet transform (WT) in image processing in recent years, the efficiency of its representation is limited by the spatial isotropy of its basis functions built in the horizontal and vertical directions. One-dimensional (1-D) discontinuities in images (edges and contours) that are very important elements in visual perception, intersect too many wavelet basis functions and lead to a nonsparse representation. To efficiently capture these anisotropic geometrical structures characterized by many more than the horizontal and vertical directions, a more complex multidirectional (M-DIR) and anisotropic transform is required. We present a new lattice-based perfect reconstruction and critically sampled anisotropic M-DIR WT. The transform retains the separable filtering and subsampling and the simplicity of computations and filter design from the standard two-dimensional WT, unlike in the case of some other directional transform constructions (e.g., curvelets, contourlets, or edgelets). The corresponding anisotropic basis unctions (directionlets) have directional vanishing moments along any two directions with rational slopes. Furthermore, we show that this novel transform provides an efficient tool for nonlinear approximation of images, achieving the approximation power O(N(-1.55)), which, while slower than the optimal rate O(N(-2)), is much better than O(N(-1)) achieved with wavelets, but at similar complexity
Beschreibung:Date Completed 08.08.2006
Date Revised 26.10.2019
published: Print
Citation Status MEDLINE
ISSN:1057-7149