Anticipated yield loss in field-grown soybean under elevated ozone can be avoided at the expense of leaf growth during early reproductive growth stages in favourable environmental conditions

Ozone is a powerful oxidizing agent which is responsible for more damage to vegetation than any other air pollutant. In this study, leaf growth, photosynthesis, and carbohydrate content were analysed during the seed-filling growth stage of field-grown soybeans exposed to ambient air and 1.2 times am...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 57(2006), 10 vom: 15., Seite 2267-75
1. Verfasser: Christ, Maja M (VerfasserIn)
Weitere Verfasser: Ainsworth, Elizabeth A, Nelson, Randall, Schurr, Ulrich, Walter, Achim
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S. Ozone 66H7ZZK23N
Beschreibung
Zusammenfassung:Ozone is a powerful oxidizing agent which is responsible for more damage to vegetation than any other air pollutant. In this study, leaf growth, photosynthesis, and carbohydrate content were analysed during the seed-filling growth stage of field-grown soybeans exposed to ambient air and 1.2 times ambient ozone concentration using a Free Air Concentration Enrichment (FACE) facility. By contrast to predictions based on controlled-environment and open-top chamber studies, final yield did not differ between treatments, although the cultivar used here was sensitive to ozone damage: growth and carbohydrate content of upper canopy leaves was reduced during the seed-filling stage in which an ozone-induced decrease of photosynthesis was present. However, 2004 was an ideal growing season in central Illinois and the cumulative ozone indices were lower than in previous years. Still, the results indicate that the anticipated yield loss under ozone concentrations was avoided at the expense of leaf growth, as reserves were diverted from vegetative to reproductive organs
Beschreibung:Date Completed 25.10.2006
Date Revised 13.12.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1460-2431