Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval

Relevance feedback schemes based on support vector machines (SVM) have been widely used in content-based image retrieval (CBIR). However, the performance of SVM-based relevance feedback is often poor when the number of labeled positive feedback samples is small. This is mainly due to three reasons:...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 28(2006), 7 vom: 15. Juli, Seite 1088-99
1. Verfasser: Tao, Dacheng (VerfasserIn)
Weitere Verfasser: Tang, Xiaoou, Li, Xuelong, Wu, Xindong
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM163672369
003 DE-627
005 20231223100846.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0546.xml 
035 |a (DE-627)NLM163672369 
035 |a (NLM)16792098 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tao, Dacheng  |e verfasserin  |4 aut 
245 1 0 |a Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 27.07.2006 
500 |a Date Revised 15.11.2006 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Relevance feedback schemes based on support vector machines (SVM) have been widely used in content-based image retrieval (CBIR). However, the performance of SVM-based relevance feedback is often poor when the number of labeled positive feedback samples is small. This is mainly due to three reasons: 1) an SVM classifier is unstable on a small-sized training set, 2) SVM's optimal hyperplane may be biased when the positive feedback samples are much less than the negative feedback samples, and 3) overfitting happens because the number of feature dimensions is much higher than the size of the training set. In this paper, we develop a mechanism to overcome these problems. To address the first two problems, we propose an asymmetric bagging-based SVM (AB-SVM). For the third problem, we combine the random subspace method and SVM for relevance feedback, which is named random subspace SVM (RS-SVM). Finally, by integrating AB-SVM and RS-SVM, an asymmetric bagging and random subspace SVM (ABRS-SVM) is built to solve these three problems and further improve the relevance feedback performance 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Tang, Xiaoou  |e verfasserin  |4 aut 
700 1 |a Li, Xuelong  |e verfasserin  |4 aut 
700 1 |a Wu, Xindong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 28(2006), 7 vom: 15. Juli, Seite 1088-99  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:28  |g year:2006  |g number:7  |g day:15  |g month:07  |g pages:1088-99 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2006  |e 7  |b 15  |c 07  |h 1088-99