2-D array for 3-D ultrasound imaging using synthetic aperture techniques
A two-dimensional (2-D) array of 256 X 256 = 65,536 elements, with total area 4 X 4 = 16 cm2, serves as a flexible platform for developing acquisition schemes for 3-D rectilinear ultrasound imaging at 10 MHz using synthetic aperture techniques. This innovative system combines a simplified interconne...
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 53(2006), 5 vom: 05. Mai, Seite 912-24 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2006
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
Schlagworte: | Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't |
Zusammenfassung: | A two-dimensional (2-D) array of 256 X 256 = 65,536 elements, with total area 4 X 4 = 16 cm2, serves as a flexible platform for developing acquisition schemes for 3-D rectilinear ultrasound imaging at 10 MHz using synthetic aperture techniques. This innovative system combines a simplified interconnect scheme and synthetic aperture techniques with a 2-D array for 3-D imaging. A row-column addressing scheme is used to access different elements for different transmit events. This addressing scheme is achieved through a simple interconnect, consisting of one top, one bottom single-layer, flex circuits that, compared to multilayer flex circuits, are simpler to design, cheaper to manufacture, and thinner so their effect on the acoustic response is minimized. We present three designs that prioritize different design objectives: volume acquisiton time, resolution, and sensitivity, while maintaining acceptable figures for the other design objectives. For example, one design overlooks time-acquisition requirements, assumes good noise conditions, and optimizes for resolution, achieving -6 dB and -20 dB beamwidths of less than 0.2 and 0.5 mm, respectively, for an F/2 aperture. Another design can acquire an entire volume in 256 transmit events, with -6 dB and -20 dB beamwidths in the order of 0.4 and 0.8 mm, respectively |
---|---|
Beschreibung: | Date Completed 07.07.2006 Date Revised 17.09.2019 published: Print Citation Status MEDLINE |
ISSN: | 1525-8955 |