A joint source-channel distortion model for JPEG compressed images

The need for efficient joint source-channel coding (JSCC) is growing as new multimedia services are introduced in commercial wireless communication systems. An important component of practical JSCC schemes is a distortion model that can predict the quality of compressed digital multimedia such as im...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 15(2006), 6 vom: 30. Juni, Seite 1349-64
1. Verfasser: Sabir, Muhammad F (VerfasserIn)
Weitere Verfasser: Sheikh, Hamid Rahim, Heath, Robert W Jr, Bovik, Alan C
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM163413959
003 DE-627
005 20231223100305.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0545.xml 
035 |a (DE-627)NLM163413959 
035 |a (NLM)16764262 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sabir, Muhammad F  |e verfasserin  |4 aut 
245 1 2 |a A joint source-channel distortion model for JPEG compressed images 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 07.07.2006 
500 |a Date Revised 26.10.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The need for efficient joint source-channel coding (JSCC) is growing as new multimedia services are introduced in commercial wireless communication systems. An important component of practical JSCC schemes is a distortion model that can predict the quality of compressed digital multimedia such as images and videos. The usual approach in the JSCC literature for quantifying the distortion due to quantization and channel errors is to estimate it for each image using the statistics of the image for a given signal-to-noise ratio (SNR). This is not an efficient approach in the design of real-time systems because of the computational complexity. A more useful and practical approach would be to design JSCC techniques that minimize average distortion for a large set of images based on some distortion model rather than carrying out per-image optimizations. However, models for estimating average distortion due to quantization and channel bit errors in a combined fashion for a large set of images are not available for practical image or video coding standards employing entropy coding and differential coding. This paper presents a statistical model for estimating the distortion introduced in progressive JPEG compressed images due to quantization and channel bit errors in a joint manner. Statistical modeling of important compression techniques such as Huffman coding, differential pulse-coding modulation, and run-length coding are included in the model. Examples show that the distortion in terms of peak signal-to-noise ratio (PSNR) can be predicted within a 2-dB maximum error over a variety of compression ratios and bit-error rates. To illustrate the utility of the proposed model, we present an unequal power allocation scheme as a simple application of our model. Results show that it gives a PSNR gain of around 6.5 dB at low SNRs, as compared to equal power allocation 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Sheikh, Hamid Rahim  |e verfasserin  |4 aut 
700 1 |a Heath, Robert W  |c Jr  |e verfasserin  |4 aut 
700 1 |a Bovik, Alan C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 15(2006), 6 vom: 30. Juni, Seite 1349-64  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:15  |g year:2006  |g number:6  |g day:30  |g month:06  |g pages:1349-64 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2006  |e 6  |b 30  |c 06  |h 1349-64