GOP-based channel rate allocation using genetic algorithm for scalable video streaming over error-prone networks

In this paper, we address the problem of unequal error protection (UEP) for scalable video transmission over wireless packet-erasure channel. Unequal amounts of protection are allocated to the different frames (I- or P-frame) of a group-of-pictures (GOP), and in each frame, unequal amounts of protec...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1997. - 15(2006), 6 vom: 30. Juni, Seite 1323-30
1. Verfasser: Fang, Tao (VerfasserIn)
Weitere Verfasser: Chau, Lap-Pui
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM163413932
003 DE-627
005 20250207093112.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0545.xml 
035 |a (DE-627)NLM163413932 
035 |a (NLM)16764260 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fang, Tao  |e verfasserin  |4 aut 
245 1 0 |a GOP-based channel rate allocation using genetic algorithm for scalable video streaming over error-prone networks 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 07.07.2006 
500 |a Date Revised 26.10.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a In this paper, we address the problem of unequal error protection (UEP) for scalable video transmission over wireless packet-erasure channel. Unequal amounts of protection are allocated to the different frames (I- or P-frame) of a group-of-pictures (GOP), and in each frame, unequal amounts of protection are allocated to the progressive bit-stream of scalable video to provide a graceful degradation of video quality as packet loss rate varies. We use a genetic algorithm (GA) to quickly get the allocation pattern, which is hard to get with other conventional methods, like hill-climbing method. Theoretical analysis and experimental results both demonstrate the advantage of the proposed algorithm 
650 4 |a Journal Article 
700 1 |a Chau, Lap-Pui  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1997  |g 15(2006), 6 vom: 30. Juni, Seite 1323-30  |w (DE-627)NLM09821456X  |x 1057-7149  |7 nnns 
773 1 8 |g volume:15  |g year:2006  |g number:6  |g day:30  |g month:06  |g pages:1323-30 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2006  |e 6  |b 30  |c 06  |h 1323-30