Spin states in polynuclear clusters : the [Fe2O2] core of the methane monooxygenase active site

The ability to provide a correct description of different spin states of mono- and polynuclear transition metal complexes is essential for a detailed investigation of reactions that are catalyzed by such complexes. We study the energetics of different total and local spin states of a dinuclear oxyge...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 27(2006), 12 vom: 03. Sept., Seite 1223-39
1. Verfasser: Herrmann, Carmen (VerfasserIn)
Weitere Verfasser: Yu, Lian, Reiher, Markus
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Ferric Compounds ferric oxide 1K09F3G675 Oxygenases EC 1.13.- methane monooxygenase EC 1.14.13.25
Beschreibung
Zusammenfassung:The ability to provide a correct description of different spin states of mono- and polynuclear transition metal complexes is essential for a detailed investigation of reactions that are catalyzed by such complexes. We study the energetics of different total and local spin states of a dinuclear oxygen-bridged iron(IV) model for the intermediate Q of the hydroxylase component of methane monooxygenase by means of spin-unrestricted Kohn-Sham density functional theory. Because it is known that the spin state total energies depend systematically on the density functional, and that this dependence is intimately connected to the exact exchange admixture of present-day hybdrid functionals, we compare total energies, local and total spin values, and Heisenberg coupling constants calculated with the established functionals BP86 and B3LYP as well as with a modified B3LYP version with an exact exchange admixture ranging from 0 to 24%. It is found that exact exchange enhances local spin polarization. As the exact exchange admixture increases, the high-spin state is energetically favored, although the Broken-Symmetry state always is the ground state. Instead of the strict linear variation of the energy splittings observed for mononuclear complexes, a slightly nonlinear dependence is found. The Heisenberg coupling constants J(Fe1Fe2) --evaluated according to three different proposals from the literature -- are found to vary from -129 to -494 cm(-1) accordingly. The experimental finding that intermediate Q has an antiferromagnetic ground state is thus confirmed
Beschreibung:Date Completed 15.08.2007
Date Revised 19.11.2015
published: Print
Citation Status MEDLINE
ISSN:0192-8651