Roles for redox regulation in leaf senescence of pea plants grown on different sources of nitrogen nutrition
Leaf senescence and associated changes in redox components were monitored in commercial pea (Pisum sativum L. cv. Phoenix) plants grown under different nitrogen regimes for 12 weeks until both nodules and leaves had fully senesced. One group of plants was inoculated with Rhizobium leguminosarum and...
Veröffentlicht in: | Journal of experimental botany. - 1985. - 57(2006), 8 vom: 15., Seite 1735-45 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2006
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Antioxidants Nitrogen N762921K75 Ascorbic Acid PQ6CK8PD0R |
Zusammenfassung: | Leaf senescence and associated changes in redox components were monitored in commercial pea (Pisum sativum L. cv. Phoenix) plants grown under different nitrogen regimes for 12 weeks until both nodules and leaves had fully senesced. One group of plants was inoculated with Rhizobium leguminosarum and grown with nutrient solution without nitrogen. A second group was not inoculated and these were grown on complete nutrient solution containing nitrogen. Leaf senescence was evident at 11 weeks in both sets of plants as determined by decreases in leaf chlorophyll and protein. However, a marked decrease in photosynthesis was observed in nodulated plants at 9 weeks. Losses in the leaf ascorbate pool preceded leaf senescence, but leaf glutathione decreased only during the senescence phase. Large decreases in dehydroascorbate reductase and catalase activities were observed after 9 weeks, but the activities of other antioxidant enzymes remained high even at 11 weeks. The extent of lipid peroxidation, the number of protein carbonyl groups and the level of H(2)O(2) in the leaves of both nitrate-fed and nodulated plants were highest at the later stages of senescence. At 12 weeks, the leaves of nodulated plants had more protein carbonyl groups and greater lipid peroxidation than the nitrate-fed controls. These results demonstrate that the leaves of nodulated plants undergo an earlier inhibition of photosynthesis and suffer enhanced oxidation during the senescence phase than those from nitrate-fed plants |
---|---|
Beschreibung: | Date Completed 04.10.2006 Date Revised 09.01.2024 published: Print Citation Status MEDLINE |
ISSN: | 1460-2431 |