Properties of polysaccharides grafted on nanoparticles investigated by EPR

The in vivo fate of nanoparticles developed as drug delivery systems is influenced by the surface characteristics of the colloidal particles. In the present work, surface characteristics of a series of poly(isobutylcyanoacrylate) nanoparticles prepared by redox radical emulsion polymerization with p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 22(2006), 12 vom: 06. Juni, Seite 5485-90
1. Verfasser: Bertholon, Isabelle (VerfasserIn)
Weitere Verfasser: Hommel, Hubert, Labarre, Denis, Vauthier, Christine
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Cyanoacrylates Polymers Polysaccharides Enbucrilate F8CEP82QNP
Beschreibung
Zusammenfassung:The in vivo fate of nanoparticles developed as drug delivery systems is influenced by the surface characteristics of the colloidal particles. In the present work, surface characteristics of a series of poly(isobutylcyanoacrylate) nanoparticles prepared by redox radical emulsion polymerization with polysaccharides of different molecular weight and nature were characterized by EPR. To this aim, a spin label was grafted on the polysaccharide chains after synthesis of the nanoparticles. The percentage of label showing fast movements was evaluated from EPR spectra which were analyzed according to the Kivelson theory. The results showed that mobility depended on temperature, type, and molecular weight of the polysaccharides. Differences between nanoparticles appeared with low-molecular-weight polysaccharides, while over a defined molecular weight which depended on the nature of the polysaccharide, the spin label behaved almost the same way in the different types of nanoparticles. Paradoxically, the percentage of fast moving label was the highest when linked to the shortest chitosan, which was the most rigid polysaccharide tested in this study. Thus, it was concluded that the apparent mobility of the polysaccharide evaluated by the EPR method depended on the capacity of the polysaccharide chains to fold making possible hydrophobic interactions between the label and the nanoparticle core. The transition between the unfolded-folded regiment depended on the molecular weight and on the nature of the polysaccharide. Results of this study may be useful to improve the understanding of the nanoparticle interactions with blood proteins and complement which in turn influence the in vivo fate of nanoparticles used as drug delivery systems
Beschreibung:Date Completed 24.07.2007
Date Revised 01.12.2018
published: Print
Citation Status MEDLINE
ISSN:1520-5827