DPPC Langmuir monolayer at the air-water interface : probing the tail and head groups by vibrational sum frequency generation spectroscopy
Dipalmitoylphosphatidylcholine (DPPC) is the predominant lipid component in lung surfactant. In this study, the Langmuir monolayer of deuterated dipalmitoylphosphatidylcholine (DPPC-d62) in the liquid-expanded (LE) phase and the liquid-condensed (LC) phase has been investigated at the air-water inte...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 22(2006), 12 vom: 06. Juni, Seite 5341-9 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2006
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Membranes, Artificial Pulmonary Surfactants 1,2-Dipalmitoylphosphatidylcholine 2644-64-6 |
Zusammenfassung: | Dipalmitoylphosphatidylcholine (DPPC) is the predominant lipid component in lung surfactant. In this study, the Langmuir monolayer of deuterated dipalmitoylphosphatidylcholine (DPPC-d62) in the liquid-expanded (LE) phase and the liquid-condensed (LC) phase has been investigated at the air-water interface with broad bandwidth sum frequency generation (BBSFG) spectroscopy combined with a Langmuir film balance. Four moieties of the DPPC molecule are probed by BBSFG: the terminal methyl (CD3) groups of the tails, the methylene (CD2) groups of the tails, the choline methyls (CH3) in the headgroup, and the phosphate in the headgroup. BBSFG spectra of the four DPPC moieties provide information about chain conformation, chain orientation, headgroup orientation, and headgroup hydration. These results provide a comprehensive picture of the DPPC phase behavior at the air-water interface. In the LE phase, the DPPC hydrocarbon chains are conformationally disordered with a significant number of gauche configurations. In the LC phase, the hydrocarbon chains are in an all-trans conformation and are tilted from the surface normal by 25 degrees. In addition, the orientations of the tail terminal methyl groups are found to remain nearly unchanged with the variation of surface area. Qualitative analysis of the BBSFG spectra of the choline methyl groups suggests that these methyl groups are tilted but lie somewhat parallel to the surface plane in both the LE and LC phases. The dehydration of the phosphate headgroup due to the LE-LC phase transition is observed through the frequency blue shift of the phosphate symmetric stretch in the fingerprint region. In addition, implications for lung surfactant function from this work are discussed |
---|---|
Beschreibung: | Date Completed 24.07.2007 Date Revised 30.05.2006 published: Print Citation Status MEDLINE |
ISSN: | 1520-5827 |