Learning shape-classes using a mixture of tree-unions

This paper poses the problem of tree-clustering as that of fitting a mixture of tree unions to a set of sample trees. The tree-unions are structures from which the individual data samples belonging to a cluster can be obtained by edit operations. The distribution of observed tree nodes in each clust...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 28(2006), 6 vom: 06. Juni, Seite 954-67
1. Verfasser: Torsello, Andrea (VerfasserIn)
Weitere Verfasser: Hancock, Edwin R
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM163035938
003 DE-627
005 20231223095509.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0544.xml 
035 |a (DE-627)NLM163035938 
035 |a (NLM)16724589 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Torsello, Andrea  |e verfasserin  |4 aut 
245 1 0 |a Learning shape-classes using a mixture of tree-unions 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 20.06.2006 
500 |a Date Revised 26.05.2006 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper poses the problem of tree-clustering as that of fitting a mixture of tree unions to a set of sample trees. The tree-unions are structures from which the individual data samples belonging to a cluster can be obtained by edit operations. The distribution of observed tree nodes in each cluster sample is assumed to be governed by a Bernoulli distribution. The clustering method is designed to operate when the correspondences between nodes are unknown and must be inferred as part of the learning process. We adopt a minimum description length approach to the problem of fitting the mixture model to data. We make maximum-likelihood estimates of the Bernoulli parameters. The tree-unions and the mixing proportions are sought so as to minimize the description length criterion. This is the sum of the negative logarithm of the Bernoulli distribution, and a message-length criterion that encodes both the complexity of the union-trees and the number of mixture components. We locate node correspondences by minimizing the edit distance with the current tree unions, and show that the edit distance is linked to the description length criterion. The method can be applied to both unweighted and weighted trees. We illustrate the utility of the resulting algorithm on the problem of classifying 2D shapes using a shock graph representation 
650 4 |a Journal Article 
700 1 |a Hancock, Edwin R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 28(2006), 6 vom: 06. Juni, Seite 954-67  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:28  |g year:2006  |g number:6  |g day:06  |g month:06  |g pages:954-67 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2006  |e 6  |b 06  |c 06  |h 954-67