Accurate prediction of the blood-brain partitioning of a large set of solutes using ab initio calculations and genetic neural network modeling

Copyright 2006 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 27(2006), 11 vom: 26. Aug., Seite 1125-35
1. Verfasser: Hemmateenejad, Bahram (VerfasserIn)
Weitere Verfasser: Miri, Ramin, Safarpour, Mohammad A, Mehdipour, Ahmad R
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM163009112
003 DE-627
005 20231223095433.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0543.xml 
035 |a (DE-627)NLM163009112 
035 |a (NLM)16721721 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hemmateenejad, Bahram  |e verfasserin  |4 aut 
245 1 0 |a Accurate prediction of the blood-brain partitioning of a large set of solutes using ab initio calculations and genetic neural network modeling 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 20.07.2007 
500 |a Date Revised 12.06.2006 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Copyright 2006 Wiley Periodicals, Inc. 
520 |a A genetic algorithm-based artificial neural network model has been developed for the accurate prediction of the blood-brain barrier partitioning (in logBB scale) of chemicals. A data set of 123 logBB (115 old molecules and 8 new molecules) of a diverse set of chemicals was chosen in this study. The optimum 3D geometry of the molecules was estimated by the ab initio calculations at the level of RHF/STO-3G, and consequently, different electronic descriptors were calculated for each molecule. Indeed, logP as a measure of hydrophobicity and different topological indices were also calculated. A three-layered artificial neural network with backpropagation of an error-learning algorithm was employed to process the nonlinear relationship between the calculated descriptors and logBB data. Genetic algorithm was used as a feature selection method to select the most relevant set of descriptors as the input of the network. Modeling of the logBB data by the only quantum descriptors produced a 5:4:1 ANN structure with RMS error of validation and crossvalidation equal to 0.224 and 0.227, respectively. Better nonlinear model (RMS(V) and RMS(CV) equals to 0.097 and 0.099, respectively) was obtained by the incorporation of the logP and the principal components of the topological indices to electronic descriptors. The ultimate performances of the models were obtained by the application of the models to predict the logBB of 23 molecules that did not have contribution in the steps of model development. The best model produced RMS error of prediction 0.140, and could predict about 98% of variances in the logBB data 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Miri, Ramin  |e verfasserin  |4 aut 
700 1 |a Safarpour, Mohammad A  |e verfasserin  |4 aut 
700 1 |a Mehdipour, Ahmad R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 27(2006), 11 vom: 26. Aug., Seite 1125-35  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:27  |g year:2006  |g number:11  |g day:26  |g month:08  |g pages:1125-35 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2006  |e 11  |b 26  |c 08  |h 1125-35