Ratio control variate method for efficiently determining high-dimensional model representations

2006 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 27(2006), 10 vom: 30. Juli, Seite 1112-8
1. Verfasser: Li, Genyuan (VerfasserIn)
Weitere Verfasser: Rabitz, Herschel
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM162731442
003 DE-627
005 20250207075942.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0543.xml 
035 |a (DE-627)NLM162731442 
035 |a (NLM)16691567 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Genyuan  |e verfasserin  |4 aut 
245 1 0 |a Ratio control variate method for efficiently determining high-dimensional model representations 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 08.06.2007 
500 |a Date Revised 22.05.2006 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a 2006 Wiley Periodicals, Inc. 
520 |a The High-Dimensional Model Representation (HDMR) technique is a family of approaches to efficiently interpolate high-dimensional functions. RS(Random Sampling)-HDMR is a practical form of HDMR based on randomly sampling the overall function, and utilizing orthonormal polynomial expansions to approximate the RS-HDMR component functions. The determination of the expansion coefficients for the component functions employs Monte Carlo integration, which controls the accuracy of the RS-HDMR interpolation. The control variate method is an established approach to improve the accuracy of Monte Carlo integration. However, this method is often not practical for an arbitrary function f(x) because there is no general way to find the analytical control variate function h(x), which needs to be very similar to f(x). In this article, we show that truncated RS-HDMR expansions can be used as h(x) for arbitrary f(x), and a more stable iterative ratio control variate method was developed for the determination of the expansion coefficients for the RS-HDMR component functions. As the asymptotic error (standard deviation) of the estimator given by the ratio control variate method is proportional to 1/N(sample size), it is more efficient than the direct Monte Carlo integration, whose error is proportional to 1/square root(N). In an illustration of a four-dimensional atmospheric model a few hundred random samples are sufficient to construct an RS-HDMR expansion by the ratio control variate method with an accuracy comparable to that obtained by direct Monte Carlo integration with thousands of samples 
650 4 |a Journal Article 
700 1 |a Rabitz, Herschel  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 27(2006), 10 vom: 30. Juli, Seite 1112-8  |w (DE-627)NLM098138448  |x 0192-8651  |7 nnns 
773 1 8 |g volume:27  |g year:2006  |g number:10  |g day:30  |g month:07  |g pages:1112-8 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2006  |e 10  |b 30  |c 07  |h 1112-8