|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM162247184 |
003 |
DE-627 |
005 |
20231223093843.0 |
007 |
tu |
008 |
231223s2006 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0541.xml
|
035 |
|
|
|a (DE-627)NLM162247184
|
035 |
|
|
|a (NLM)16640266
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zimmermann, Matthias
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Offline grammar-based recognition of handwritten sentences
|
264 |
|
1 |
|c 2006
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.05.2006
|
500 |
|
|
|a Date Revised 01.12.2018
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a This paper proposes a sequential coupling of a Hidden Markov Model (HMM) recognizer for offline handwritten English sentences with a probabilistic bottom-up chart parser using Stochastic Context-Free Grammars (SCFG) extracted from a text corpus. Based on extensive experiments, we conclude that syntax analysis helps to improve recognition rates significantly
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Chappelier, Jean-Cédric
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Bunke, Horst
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 28(2006), 5 vom: 12. Mai, Seite 818-21
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:28
|g year:2006
|g number:5
|g day:12
|g month:05
|g pages:818-21
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 28
|j 2006
|e 5
|b 12
|c 05
|h 818-21
|