The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO)

The polarizable continuum model (PCM) for the description of solvent effects is combined with the fragment molecular orbital (FMO) method at several levels of theory, using a many-body expansion of the electron density and the corresponding electrostatic potential, thereby determining solute (FMO)-s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 27(2006), 8 vom: 06. Juni, Seite 976-85
1. Verfasser: Fedorov, Dmitri G (VerfasserIn)
Weitere Verfasser: Kitaura, Kazuo, Li, Hui, Jensen, Jan H, Gordon, Mark S
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM161913466
003 DE-627
005 20231223093137.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0540.xml 
035 |a (DE-627)NLM161913466 
035 |a (NLM)16604514 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fedorov, Dmitri G  |e verfasserin  |4 aut 
245 1 4 |a The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO) 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 09.02.2007 
500 |a Date Revised 27.04.2006 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The polarizable continuum model (PCM) for the description of solvent effects is combined with the fragment molecular orbital (FMO) method at several levels of theory, using a many-body expansion of the electron density and the corresponding electrostatic potential, thereby determining solute (FMO)-solvent (PCM) interactions. The resulting method, denoted FMO/PCM, is applied to a set of model systems, including alpha-helices and beta-strands of alanine consisting of 10, 20, and 40 residues and their mutants to charged arginine and glutamate residues. The FMO/PCM error in reproducing the PCM solvation energy for a full system is found to be below 1 kcal/mol in all cases if a two-body expansion of the electron density is used in the PCM potential calculation and two residues are assigned to each fragment. The scaling of the FMO/PCM method is demonstrated to be nearly linear at all levels for polyalanine systems. A study of the relative stabilities of alpha-helices and beta-strands is performed, and the magnitude of the contributing factors is determined. The method is applied to three proteins consisting of 20, 129, and 245 residues, and the solvation energy and computational efficiency are discussed 
650 4 |a Journal Article 
700 1 |a Kitaura, Kazuo  |e verfasserin  |4 aut 
700 1 |a Li, Hui  |e verfasserin  |4 aut 
700 1 |a Jensen, Jan H  |e verfasserin  |4 aut 
700 1 |a Gordon, Mark S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 27(2006), 8 vom: 06. Juni, Seite 976-85  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:27  |g year:2006  |g number:8  |g day:06  |g month:06  |g pages:976-85 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 27  |j 2006  |e 8  |b 06  |c 06  |h 976-85