Development of mesophase pitch derived mesoporous carbons through a commercially nanosized template

Mesoporous carbons (MCs) with a high surface area (up to 900 m2/g), large pore volume (up to 2.1 cm3/g), high mesopore ratio (94%), and high yield (70%) were successfully prepared from an AR mesophase pitch, using a commercially nanosized silica template. The removal of the template provided some la...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1991. - 22(2006), 8 vom: 11. Apr., Seite 3791-7
1. Verfasser: Qiao, W M (VerfasserIn)
Weitere Verfasser: Song, Y, Hong, S H, Lim, S Y, Yoon, S-H, Korai, Y, Mochida, I
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Mesoporous carbons (MCs) with a high surface area (up to 900 m2/g), large pore volume (up to 2.1 cm3/g), high mesopore ratio (94%), and high yield (70%) were successfully prepared from an AR mesophase pitch, using a commercially nanosized silica template. The removal of the template provided some larger mesopores of 25-50 nm (pore I) with a surface area of ca. 300 m2/g, while the successive carbonization opened the closed pores within the carbon body to give smaller mesopores of 2-10 nm (pore II) with a similar surface area. During the carbonization of pitch precursor, the evaporation of volatile components swells the carbon to introduce the second mesopores among the domains and even microdomain units because of their rearrangements and overlappings in the process. The addition of iron salt with the silica template resulted in a remarkable increase of the surface area (ca. 300 m2/g) by introducing mesopores of 3-5 nm. The resultant MCs maintained some graphitizable natures derived from the anisotropic precursor. Their graphitization at 2400 degrees C provided the graphitic structure with large surface areas (270-460 m2/g) and mesoporosity
Beschreibung:Date Completed 09.07.2007
Date Revised 04.04.2006
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:0743-7463