Correcting curvature-density effects in the Hamilton-Jacobi skeleton

The Hamilton-Jacobi approach has proven to be a powerful and elegant method for extracting the skeleton of two-dimensional (2-D) shapes. The approach is based on the observation that the normalized flux associated with the inward evolution of the object boundary at nonskeletal points tends to zero a...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 15(2006), 4 vom: 27. Apr., Seite 877-91
1. Verfasser: Torsello, Andrea (VerfasserIn)
Weitere Verfasser: Hancock, Edwin R
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article
LEADER 01000naa a22002652 4500
001 NLM161674755
003 DE-627
005 20231223092649.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0539.xml 
035 |a (DE-627)NLM161674755 
035 |a (NLM)16579375 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Torsello, Andrea  |e verfasserin  |4 aut 
245 1 0 |a Correcting curvature-density effects in the Hamilton-Jacobi skeleton 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 10.05.2006 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a The Hamilton-Jacobi approach has proven to be a powerful and elegant method for extracting the skeleton of two-dimensional (2-D) shapes. The approach is based on the observation that the normalized flux associated with the inward evolution of the object boundary at nonskeletal points tends to zero as the size of the integration area tends to zero, while the flux is negative at the locations of skeletal points. Nonetheless, the error in calculating the flux on the image lattice is both limited by the pixel resolution and also proportional to the curvature of the boundary evolution front and, hence, unbounded near endpoints. This makes the exact location of endpoints difficult and renders the performance of the skeleton extraction algorithm dependent on a threshold parameter. This problem can be overcome by using interpolation techniques to calculate the flux with subpixel precision. However, here, we develop a method for 2-D skeleton extraction that circumvents the problem by eliminating the curvature contribution to the error. This is done by taking into account variations of density due to boundary curvature. This yields a skeletonization algorithm that gives both better localization and less susceptibility to boundary noise and parameter choice than the Hamilton-Jacobi method 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
700 1 |a Hancock, Edwin R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 15(2006), 4 vom: 27. Apr., Seite 877-91  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:15  |g year:2006  |g number:4  |g day:27  |g month:04  |g pages:877-91 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2006  |e 4  |b 27  |c 04  |h 877-91