Probing cooperative interactions of tailor-made nucleation surfaces and macromolecules : a bioinspired route to hollow micrometer-sized calcium carbonate particles

It is well known that the formation of biominerals by living organisms is governed by the cooperation of soluble and insoluble macromolecules with peculiar interfacial properties. To date, most of the studies on mineralization processes involve model systems that account only for the existence of on...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 22(2006), 7 vom: 28. März, Seite 3073-80
1. Verfasser: Loges, Niklas (VerfasserIn)
Weitere Verfasser: Graf, Karlheinz, Nasdala, Lutz, Tremel, Wolfgang
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:It is well known that the formation of biominerals by living organisms is governed by the cooperation of soluble and insoluble macromolecules with peculiar interfacial properties. To date, most of the studies on mineralization processes involve model systems that account only for the existence of one organic matrix and thus disregard the interaction between the soluble and insoluble organic components that is crucial for a better understanding of the processes taking place at the inorganic-organic interface. We have set up a model system composed of a matrix surface, which is composed of a self-assembled monolayer (SAM) and a soluble component, poly(aspartic acid). It could be demonstrated that the phase selection of calcium carbonate and the morphology of the resulting particles are determined by the stabilization of amorphous precursor particles by the polymer and the interaction between polymer and SAM. The morphology of the hollow vaterite microspheres are reminiscent to a 3D analogue of the so-called "coffee-stain effect", where the transformation from a voluminous hydrated, amorphous material to a more dense crystalline material leads to the formation of hollow spheres from massive spherical microparticles
Beschreibung:Date Completed 06.06.2007
Date Revised 21.03.2006
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827