Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers
A real-time digital beamformer for high-frequency (>20 MHz) linear ultrasonic arrays has been developed. The system can handle up to 64-element linear array transducers and excite 16 channels and receive simultaneously at 100 MHz sampling frequency with 8-bit precision. Radio frequency (RF) signa...
Veröffentlicht in: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 53(2006), 2 vom: 01. Feb., Seite 317-23 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , |
Format: | Aufsatz |
Sprache: | English |
Veröffentlicht: |
2006
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on ultrasonics, ferroelectrics, and frequency control |
Schlagworte: | Evaluation Study Journal Article Research Support, N.I.H., Extramural |
Zusammenfassung: | A real-time digital beamformer for high-frequency (>20 MHz) linear ultrasonic arrays has been developed. The system can handle up to 64-element linear array transducers and excite 16 channels and receive simultaneously at 100 MHz sampling frequency with 8-bit precision. Radio frequency (RF) signals are digitized, delayed, and summed through a real-time digital beamformer, which is implemented using a field programmable gate array (FPGA). Using fractional delay filters, fine delays as small as 2 ns can be implemented. A frame rate of 30 frames per second is achieved. Wire phantom (20 microm tungsten) images were obtained and -6 dB axial and lateral widths were measured. The results showed that, using a 30 MHz, 48-element array with a pitch of 100 microm produced a -6 dB width of 68 microm in the axial and 370 microm in the lateral direction at 6.4 mm range. Images from an excised rabbit eye sample also were acquired, and fine anatomical structures, such as the cornea and lens, were resolved |
---|---|
Beschreibung: | Date Completed 31.03.2006 Date Revised 10.03.2022 published: Print Citation Status MEDLINE |
ISSN: | 1525-8955 |