Kronecker product approximation for preconditioning in three-dimensional imaging applications

We derive Kronecker product approximations, with the help of tensor decompositions, to construct approximations of severely ill-conditioned matrices that arise in three-dimensional (3-D) image processing applications. We use the Kronecker product approximations to derive preconditioners for iterativ...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 15(2006), 3 vom: 07. März, Seite 604-13
1. Verfasser: Nagy, James G (VerfasserIn)
Weitere Verfasser: Kilmer, Misha E
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM161105904
003 DE-627
005 20231223091508.0
007 tu
008 231223s2006 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0537.xml 
035 |a (DE-627)NLM161105904 
035 |a (NLM)16519347 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nagy, James G  |e verfasserin  |4 aut 
245 1 0 |a Kronecker product approximation for preconditioning in three-dimensional imaging applications 
264 1 |c 2006 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 30.03.2006 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a We derive Kronecker product approximations, with the help of tensor decompositions, to construct approximations of severely ill-conditioned matrices that arise in three-dimensional (3-D) image processing applications. We use the Kronecker product approximations to derive preconditioners for iterative regularization techniques; the resulting preconditioned algorithms allow us to restore 3-D images in a computationally efficient manner. Through examples in microscopy and medical imaging, we show that the Kronecker approximation preconditioners provide a powerful tool that can be used to improve efficiency of iterative image restoration algorithms 
650 4 |a Evaluation Study 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Kilmer, Misha E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 15(2006), 3 vom: 07. März, Seite 604-13  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:15  |g year:2006  |g number:3  |g day:07  |g month:03  |g pages:604-13 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 15  |j 2006  |e 3  |b 07  |c 03  |h 604-13