|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM160825873 |
003 |
DE-627 |
005 |
20231223090908.0 |
007 |
tu |
008 |
231223s2006 xx ||||| 00| ||eng c |
028 |
5 |
2 |
|a pubmed24n0536.xml
|
035 |
|
|
|a (DE-627)NLM160825873
|
035 |
|
|
|a (NLM)16489826
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Zou, Ji-Jun
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Control of the metal-support interface of NiO-loaded photocatalysts via cold plasma treatment
|
264 |
|
1 |
|c 2006
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ohne Hilfsmittel zu benutzen
|b n
|2 rdamedia
|
338 |
|
|
|a Band
|b nc
|2 rdacarrier
|
500 |
|
|
|a Date Completed 16.05.2007
|
500 |
|
|
|a Date Revised 21.02.2006
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a NiO-loaded semiconductors have been extensively used as the photocatalysts for water splitting. The metal-support interface is an important factor affecting the efficiency. In the present work, the pretreatment methods were studied to produce a more desirable metal-support interface using Ta2O5 and ZrO2 as the support. The traditional method includes a thermal decomposition, reduction at 773 K, and oxidation at 473 K (R773-O473). The thermal decomposition of Ni(NO3)2 makes the Ni atoms migrate into the bulk of the supports, resulting in a diffused interfacial region. Alternatively, a cold plasma treatment was used to replace the thermal decomposition. Metal salts are quickly decomposed by glow discharge plasma treatment at room temperature, avoiding the thermal diffusion of Ni atoms. With the sequent R773-O473 treatment, a clean metal-support interface is produced. Moreover, the metal particles have optimal shapes with a larger surface. In photocatalysis, the clean metal-support interface is more favorable for the charge separation and transfer, and the increased metal surface provides more active sites. NiO/Ta2O5 and NiO/ZrO2 prepared with the plasma treatment exhibit higher activity for photocatalytic hydrogen generation from pure water and methanol solution, respectively. This work shows the potential of cold plasma treatment in the preparation of metal-loaded catalysts and nanostructured materials
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Liu, Chang-Jun
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhang, Yue-Ping
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 22(2006), 5 vom: 28. Feb., Seite 2334-9
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:22
|g year:2006
|g number:5
|g day:28
|g month:02
|g pages:2334-9
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 22
|j 2006
|e 5
|b 28
|c 02
|h 2334-9
|