Special paraunitary matrices, Cayley transform, and multidimensional orthogonal filter banks

We characterize and design multidimensional (MD) orthogonal filter banks using special paraunitary matrices and the Cayley transform. Orthogonal filter banks are represented by paraunitary matrices in the polyphase domain. We define special paraunitary matrices as paraunitary matrices with unit dete...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 15(2006), 2 vom: 30. Feb., Seite 511-9
1. Verfasser: Zhou, Jianping (VerfasserIn)
Weitere Verfasser: Do, Minh N, Kovaĉević, Jelena
Format: Aufsatz
Sprache:English
Veröffentlicht: 2006
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Evaluation Study Journal Article Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:We characterize and design multidimensional (MD) orthogonal filter banks using special paraunitary matrices and the Cayley transform. Orthogonal filter banks are represented by paraunitary matrices in the polyphase domain. We define special paraunitary matrices as paraunitary matrices with unit determinant. We show that every paraunitary matrix can be characterized by a special paraunitary matrix and a phase factor. Therefore, the design of paraunitary matrices (and thus of orthogonal filter banks) becomes the design of special paraunitary matrices, which requires a smaller set of nonlinear equations. Moreover, we provide a complete characterization of special paraunitary matrices in the Cayley domain, which converts nonlinear constraints into linear constraints. Our method greatly simplifies the design of MD orthogonal filter banks and leads to complete characterizations of such filter banks
Beschreibung:Date Completed 14.03.2006
Date Revised 10.12.2019
published: Print
Citation Status MEDLINE
ISSN:1941-0042